General time-dependent configuration-interaction singles. I. Molecular case

نویسندگان

چکیده

We present a grid-based implementation of the time-dependent configuration-interaction singles method suitable for computing strong-field ionization small gas-phase molecules. After outlining general equations motion used in our treatment this method, we example calculations helium, lithium hydride, water, and ethylene that demonstrate utility implementation. The following companion paper specializes to case spherical symmetry, which is applied various atoms.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Calculation of photoelectron spectra within the time-dependent configuration-interaction singles scheme

We present an extension of the time-dependent configuration-interaction singles (TDCIS) method to the computation of the electron kinetic-energy spectrum in photoionization processes. Especially for strong and long ionizing light pulses, the detection of the photoelectron poses a computational challenge because propagating the outgoing photoelectron wave packet requires large grid sizes. Two di...

متن کامل

Linear scaling multireference singles and doubles configuration interaction.

A linear scaling multireference singles and doubles configuration interaction (MRSDCI) method has been developed. By using localized bases to span the occupied and virtual subspace, local truncation schemes can be applied in tandem with integral screening to reduce the various bottlenecks in a MRSDCI calculation. Among these, the evaluation of electron repulsion integrals and their subsequent t...

متن کامل

Cholesky decomposition within local multireference singles and doubles configuration interaction.

A local multireference singles and doubles configuration interaction method in which Cholesky vectors are used in place of conventional two-electron integrals has been developed (CD-LMRSDCI). To reduce the overall cost associated with our linear scaling LMRSDCI method presented earlier [T. S. Chwee et al., J. Chem. Phys. 128, 224106 (2008)], we adopt a two-pronged approach. First, localized ort...

متن کامل

Approximately size extensive local Multireference Singles and Doubles Configuration Interaction.

Multi-reference Configuration Interaction (MRCI) is often used to predict the electronic structures and reaction energetics of small molecules with very high accuracy. Unfortunately, MRCI is inapplicable to large or even medium-sized molecules for two reasons: its computational cost scales poorly with molecule size and MRCI methods are not size extensive, leading to large energy errors. We have...

متن کامل

Excited-State Electronic Structure with Configuration Interaction Singles and Tamm–Dancoff Time-Dependent Density Functional Theory on Graphical Processing Units

Excited-state calculations are implemented in a development version of the GPU-based TeraChem software package using the configuration interaction singles (CIS) and adiabatic linear response Tamm-Dancoff time-dependent density functional theory (TDA-TDDFT) methods. The speedup of the CIS and TDDFT methods using GPU-based electron repulsion integrals and density functional quadrature integration...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical review

سال: 2022

ISSN: ['0556-2813', '1538-4497', '1089-490X']

DOI: https://doi.org/10.1103/physreva.106.043104